반응형

엔지니어 히어로즈 - 권오상



옛 속담에

'호랑이는 죽어서 가죽을 남기고

사람은 죽어서 이름을 남긴다'

는 말이 있지요.

흙수저로 태어나서 세계적인 기업을 만든 사람들...



이름만 들어도 또는, 브랜드만 들어도

우리 모두 너무나 잘 알고 있는,

그런 기업을 만들어낸 사람들의 이야기 입니다.​



우리나라로 치면

삼성(이병철), 현대(정주영), SK(최종건), LG(구자경)

이야기라고 할까요!



보스, 다이슨 등 모두에게 친숙한 브랜드에 대한 이야기도 있고,

화낙이나 JPL 같은 조금은 낮선 이름의 회사도 있습니다.  



재미있는 사례 들이 있어서 금방 읽었습니다. ^^









엔지니어들의 공통된 사항

1. 남들이 안 된다는 것에 기회가 있다는 점

2. 융합과 승병의 자세가 엔지니어링과 테크놀로지의 발전을 이끈다. 멀티플레이어

3. 관료제와 형식에 얽매이지 않는 실행 필요





드론계의 애플이자 중국의 자부심, 완타오의 다지앙 이노베이션스 테크놀로지 (DJI)

   왕펑과 장쯔이

   1935년 영국의 퀸비(여왕벌: 무인 표적기 명칭)를 보고 미국 해군참모총장 월리엄 스탠들리가 미국에서 만들어 이름을 드론(수컷 벌)로 지었음

   다지앙 2011 42억, 13년 1,300억, 14년 5,000억,  2015년 1조원 시장점유율 70%이상

   다지앙, 패럿, 3D로보틱스

   왕타오의 재산 4조 4000억





기계를 만드는 로봇의 세계 최강자, 이나바 세이우에몬의 화낙(FANUC) Fuji Automatic NUmerical Control

   앞으로는 3C시대가 온다 : Communication, Computer, Control

   이나바 1925년 이바라키 현 출생, 1946년 후지통신에 입사, 원칙대로 필요하면 필요한 자격/기준을 갖춤, 용접관련은 자격증소지자가 갑. 그래서 자격증을 취득

   인간의 개입없이 스스로 조절하는 (물시계) 기구 발명 : 레귤라(regula) : 기원전 3세기 알렉산드리아에 살던 크테시비오스가 발명: 본질은 피드백을 통해 제어하는 것

   서보모터,

   화낙엔 도서실이 없다. 책에 나와 있는 정도의 지식은 이미 죽은 지식이다. 정기간행물과 저널만 회사가 사줌

   화낙은 특허를 안낸다.  외관상 복제가 가능한 것은 특허, 노하우라면 출원안함





대중들이 열광하는 오디오계의 이단아, 아마르 보스의 보스

   1차 걸프전 막바지 1991년 2월 26일 미 육군 7군단 제2장갑기병연대와 이라크 공화국 수비대 기갑부대와 전투

   12대의 에이브람스 대 28대의  T-72전차와 16대의 장갑차

    보스의 PICVC 헤드셋

    보스(보우스) 1929년 미국 필라델피아 출생, 아버지는 인도 벵골 지역캘커타대학의 물리교수였다가 미국으로 망명

    MIT입학,  45년간 교수직, 회사 창업, 2011년 기준 1조억 재산, 2013년 7월 12일 85세로 사망

    소리를 발생시켜 소음을 없애는 능동소음제어

    이익의 대부분을 연구개발비로 지출하는 비상장회사로 능동소음제어 기술을 이용해 자동차 현가장치 1986~2010년 개발(보스 서스펜션 시스템)





보행로봇의 지존, 마크 레이버트의 보스턴 다이나믹스

   로봇 3대 회사 : 아이로봇, 포스터-밀러, 보스턴 다이나믹스

   아이로봇 : 팩봇, 플리퍼, 룸바(로봇 청소기 2002년부터 대박을 처서 2004년까지 100만대 넘개 팔림) 2005년 나스닥에 상장

                  룸바는 활주로에 떨어진 포탄 파편을 알아서 치울 기계가 필요

   포스터-밀러 : 텔론, 스워즈 개발

   보스턴 다이나믹스 : 보행로봇 개발,

       창업주 마크 레이버트 : 1949년 출생, 노스이스턴대학(유명하지 않은 대학) 출신, 1977  MIT 박사, 제트 프로펄션 랩 입사, 1980년 카네기멜론 대학 연구 (Leg Lab),MIT 스카우트, 1992년 MIT교수 시절 창립, 1995년 교수 퇴직, 2013년 12월 구글X에 피인수

    8개 임무 :  자동차 운전, 자동차 하차, 입구의 잔해 제거, 문열고 건물로 진입, 사다리 오르기, 공구를 이용해 벽 부수기, 밸브 잠그기, 호스 끼우기





세그웨이와 아이봇, 그리고 슬링샷을 만든 딘 캐이먼의 데카 (DEKA)

   2015년 4월 샤오미(+세쿼이아 캐피털)가 세그웨이 인수

   2015년 10월 19일 샤오미 신제품 발표 나인봇 미니(36만원)

   딘 캐이먼 : 우스터 폴리케트닉 인스트퓨트에 입학 1976년 자퇴. 이학교의 의 별명은 MIT와 같이 엔지니어, 버클리는 골든 베어, 칼텍은 비버, 예일은 불독





날개 없는 선풍기와 먼지봉투 없는 청소기를 만든 제임스 다이슨의 다이슨(Dyson)

   127년간 변함없던 선풍기의 고정관념을 깬 에어 멀티플라이어

   선풍기는 1850년대에 최초 등장

   다이슨이 볼배로(공으로 굴러가능 수래)를 개발하고 동업자와 공동명의로 특허를 냈는데 사업이 잘되자 동업자들이 다이슨을 회사에서 쫓아냄(스티브잡스와 같네..) 이후 집에서 집안일을 하려다 진공청소기에 분통이 터짐. 1980년부터 꼬박 3년간 집 창고에서 청소기 연구 5,126번의 시제품을 만들고 실패함





극비 특수무기 개발의 본좌, 켈리 존슨과 벤 리치의 스컹크 웍스 (Skunk Works) 록히드 어드벤스드 디벨롭먼트

고객이 필요를 느끼기 전부터 새로운 기능을 연구 개발

고고도(20Km이상) 정찰기 U-2 드래곤 레이디. 날개 길이가 몸체 길이의 2배. 미국 CIA

A-12 티타늄, 29Km 고도, 마하 3 CIA용 , 미 공군용 SR-71 블랙버드

미국 최초의 제트전투기 F-80 슈팅스타 한국전 참전

나이트 호크 F-117 (희망이 없는 다이아몬드) 스텔스 기능 : 형상와 흡수물질에 따라 레이더 반사가 달라짐에 착안





화성 탐사와 우주 개발의 선봉장, 제트 프로펄션 랩(JPL)

1997년 7월 4일 패스파인더라는 화성착륙선에 탑재돼 있던 소저너가 화성 표면에 착륙

2004년 1월 4일 화성 착륙 스피릿

2004년 1월 25일 화성 착륙 오퍼튜니티

2012년 8월 5일 착륙 큐리오시티



화성 프로그램 치프 엔지니어는 칼텍을 졸업한 롭 매닝

어려서부터 로봇과 우주선에 관심이 많았으나 성적은 보통이었음.

수학/과학에 관심이 없다가 교사의 조언으로 열심히 공부,

컬리지에 입학했는데 칼텍에서도 학위를 받을 수 있는 프로그램에 참여.

열심히 공부해서 선발 학점 달성. 2년동안 칼텍에서 전기공학 공부.

JPL 창문 닦이라도 열심히할 각오. 입사후 허접한 업무에도 묵묵히 열심히

결국 치프 엔지니어로 선임




반응형
반응형

Naive Bayers Classification 나이브 베이지안 분류에는 크게 3가지로 가우시안, 다항분포, 베르누이(이항분포)가 있다.
이중에서 분류의 목적과 데이터 유형에 따라서 사용할 방법을 선택할 수 있다.
이번에는 다항분포 나이브 베이지안 분류에 대해서 알아보자.
비연속적인 데이터 값에 대해서 여러가지의 분류중에서 선택/분류하는 방법이다.
가장 많이 알려진 예시가 바로 스팸 메일 분류다. 즉, 메일의 제목과 내용을 보고 이 메일이 스팸 메일일지 아니면 정상적인 메일일지를 분류하는 알고리즘에 사용할 수 있다. 이러한 방법은 기계학습 방법중에서 지도학습(Supervised Learning)에 해당한다.
한번 생각해보자. 아래의 내용은 메일에 들어있는 내용을 단어로 표시한 것이다. 1번과 2번의 메일 중 어느 것이 스팸 메일 일까?

1번: 광고 출시 기념 할인 대상 선물 대박 핸드폰 
2번: 회의 사장 회사 오전 대표님 연락 메일 예약 출시


당신은 몇번을 선택했나? 왜 그렇게 선택했나?
내 생각에는 1번이 스팸 메일 일 꺼라고 선택했는데, 이유는 1번에 나오는 단어들이 스팸 메일에서 자주 보이는 단어이기 때문이다.
이처럼 각 단어가 스팸 메일에서 나타나는 확률을 계산하고 모든 단어의 확률을 더해서 하나의 메일이 스팸 확률을 계산하는 방법이 바로 다항분포 베이지안 분류 방법이다.


다항분포 나이브 베이지안 알고리즘의 공식을 이해하기 쉽게 풀어서 상세하게 설명하겠다.
(아래 위키 페이지의 내용을 기반으로 설명)

 

나이브 베이즈 분류 - 위키백과, 우리 모두의 백과사전

기계 학습분야에서, '나이브 베이즈 분류(Naïve Bayes Classification)는 특성들 사이의 독립을 가정하는 베이즈 정리를 적용한 확률 분류기의 일종으로 1950 년대 이후 광범위하게 연구되고 있다. 통계

ko.wikipedia.org

 


먼저 간단한 공식 읽는 방법을 이해해 보자

[공식1] C라는 클래스 조건에서 i번째 단어(w)가 나타날 확률

p 는 확률을 말하고, w는 단어, i는 순서를 표시하고, C는 클래스를 말한다. 즉 풀어서 말하면 C라는 클래스에서 단어 wi가 나타날 확률이다. 실제 계산하는 방법은, 모든 C클래스에 속하는 단어의 출현 횟수 중에서 wi가 얼마나 나타났는지 계산하면 된다.(짧게 말하면, C클래스에 나타난 wi 출현 건수 / C클래스에 나타난 모든 단어 출현수 = wi 가 C클래스라는 조건에서 나타날 확률)
예를 들면, p(광고 | 스팸메일) 의 의미는
스팸메일이라는 클래스 조건에서 광고라는 단어가 나올 확률을 말한다.

그래서 우리는 C 클래스가 주어졌을때 D라는 문서가 나타날 확률을 아래와 같이 공식으로 만들 수 있다.

[공식2]

이 공식[공식2]을 풀어서 설명하면
C클래스(스팸메일)에 대하여 D(메일)이 속할 확률은 = C클래스(스팸메일)라는 조건에서 D의 각 단어(wi)가 나타날 확률을 모두 구하고 이 확률 들을 누적곱한 것
이다.
이처럼 [공식2]를 말하는 이유는 계산 할 수 있는 값 이기 때문이다. 즉, 스팸메일로 분류된 메일들의 내용을 통해서 스팸메일에 할당된 문서들의 워드 별로 스팸 메일에서의 출현 확률을 계산해 낼 수 있기 때문이다.

그런데 우리가 원하는 확률 값은 (새로운 메일 문서)D가 주어졌을때 C(스팸)일 확률이다.
수식으로는

[공식[3]

이다

[공식2] 에서와 같이 만들 수 있지만 문제는 D라는 조건에서의 C클래스에 모든 단어가 출현할 확률을 계산할 수 없다. 왜냐하면 우리는 어떤 D가 들어올지 모르기 때문이다. 모든 단어 조합에 해당하는 D를 만들면 해당 문서가 C클래스에 속할 확률을 알 수 있겠지만 모든 단어 조합의 문서를 만든다는 말은 결국 무한대에 가깝기 때문에 만들 수 없다.
그런데 다행히도 우리는 아래의 조건부 확률 공식을 이용해서 공식을 바꿀 수 있다.

[공식4] 조건부 확률

[공식4]를 이용하여 [공식3]을 아래와 같이 바꿀 수 있다.

[공식5]

이와 같은 방법으로 반대도 알 수 있다.

[공식6]


[공식6]을 이용해서 공식 5의 오른 쪽 분자에 있는 p(D ∩ C)를 p(C) p(D|C) 로 아래와 같이 바꿀 수 있다.

우리는 이공식을 공식2에 의해서 아래와 같이 바꿀 수 있다.

그런데 우리는 아직도 p(D)를 계산할 수가 없고
이렇게 계산해서 나온다고해도 그냥 클래스에 속할 확률인 값만 나온다. 예를 들면, 스팸 메일일 확률 88.833%, 일반 메일일 확률 88.799%. 이렇게 나와서 판단 하기 어렵다.
그래서 간단하게 스펨과 일반 두가지의 클래스만 있다고 가정하고 위 공식의 C를 스팸(S)과 일반(-S)로 바꾸면 아래와 같다.


결국 스팸 가능성이 더 큰지, 아니면 일반일 가능성이 더 큰지를 비교하면 되므로 계산해서 나온 두 값을 비율로 만들어서 어느 것이 더 높은지 판단 할 수 있다. 이를 위해 위의 공식 2개를 비율로 만들면 아래와 같다. 같은 항의 값으로 나눈 것이다.

이것을 조금 더 보기 좋게 정리하면 아래와 같다.

이렇게 계산하면 두 클래스간의 유서도비(우도비)율이 나오는데, 문제는 클래스에 속한 단어의 숫자가 일치하지 않고 발생 차이가 많이 날 수 있기 때문에 (예: 스팸단어 1,000개, 일반단어 100,000개) 로그를 취해서 크기/스케일을 맞추어 준다.


이렇게 해서 나온 값이 크면 스팸일 가능성이 높은 것이고 낮으면 일반 메일일 가능성이 높은 것이다. 이러한 구분/분류를 위해 테스트 데이터를 통해 적당한 기준값(Threshold)을 설정해 준다.


자, 이론도 알았으니 다음에는 이러한 나이브 베이지안 알고리즘을 이용하여 분류기를 직접 만들어 보자.











반응형
반응형

인공지능

쉽게말하면, 말 그대로 인공적인 지능을 말한다. 지능이란 인간이 지니는 지적인 능력으로, 합리적으로 생각하고 처리하는 능력이라고 할 수 있다. 인간이 가지는 특징인 지능을 인공적으로 만드는 것이 인공지능이다. 실제로 인공지능은 컴퓨터 프로그램이나 시스템으로 구현되기 때문이 이렇게 구현된 것을 인공지능이라고 한다.
https://ko.wikipedia.org/wiki/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5

 

인공지능 - 위키백과, 우리 모두의 백과사전

인공지능 또는 AI는 인간의 학습능력, 추론능력, 지각능력, 그외에 인공적으로 구현한 컴퓨터 프로그램 또는 이를 포함한 컴퓨터 시스템이다. 하나의 인프라 기술이기도 하다.[1][2] 인간을 포함

ko.wikipedia.org

그런데 보통 일반인에게 인공지능이 무엇인가? 라고 질문하면 로봇을 떠올리기 쉽다. 그러나 로봇은 일련의 작업을 수행하는 기계적 장치를 말한다. 즉, 쉽게 말하면 하드웨어인 것이다. https://ko.wikipedia.org/wiki/%EB%A1%9C%EB%B4%87

 

로봇 - 위키백과, 우리 모두의 백과사전

위키백과의 봇에 대해서는 위키백과:봇 문서를 참조하십시오. 로봇(문화어: 로보트, 영어: robot)은 인간과 유사한 모습과 기능을 가진 기계 또는 한 개의 컴퓨터 프로그램으로 작동할 수 있고(prog

ko.wikipedia.org

따라서 인공지능은 소프트웨어라고 할 수 있다. 이처럼 하드위어와 소프트웨어가 합쳐지면 영화에서나 볼법한 정말 사람 같은 로봇이 만들어질 수 있겠다.
위키에서는 컴퓨터 프로그램으로 정의한다.
https://ko.wikipedia.org/wiki/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5

 

인공지능 - 위키백과, 우리 모두의 백과사전

인공지능 또는 AI는 인간의 학습능력, 추론능력, 지각능력, 그외에 인공적으로 구현한 컴퓨터 프로그램 또는 이를 포함한 컴퓨터 시스템이다. 하나의 인프라 기술이기도 하다.[1][2] 인간을 포함

ko.wikipedia.org

그런데 정의가 너무 광범위하다. 인공지능 = 인공적으로 만든 지능 = 컴퓨터 프로그램
그러서 인공지능에 대해서 조금 더 자세히 알아보자

인공지능에 포함되는 분야 중에 하나가 기계학습(Machine Learning, 머신러닝) 이다. 지능 중에서 학습하는 능력을 기계가 갖게 만드는 알고리즘 영역이라고 할 수 있다.
https://ko.wikipedia.org/wiki/%EA%B8%B0%EA%B3%84_%ED%95%99%EC%8A%B5

 

기계 학습 - 위키백과, 우리 모두의 백과사전

위키백과, 우리 모두의 백과사전. 기계 학습(機械學習) 또는 머신 러닝(영어: machine learning)은 경험을 통해 자동으로 개선하는 컴퓨터 알고리즘의 연구이다.[1] 인공지능의 한 분야로 간주된다. 컴

ko.wikipedia.org

기계학습이란 용어에 대한 정의는 1959년에 아서 사무엘이 "기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"라고 정의하였다. 그리고 1998년에 카네기 멜론 대학의 톰 마이클 교수는 아래와 같이 더 구체적으로 정의하였다.

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

  만약에 P에 의해서 측정되는 T라는 작업을 할때 컴퓨터 프로그램의 성능이 경험 E를 통해 증가했다면  컴퓨터 프로그램이 성능 지표 P와 작업 T의 일부 분류 표시를 가지고 경험 E로 부터 배운다 라고 한다.

 

이러한 기계학습은 학습 방법으로 유형을 구분할 수 있다. 지도학습, 비지도학습, 강화학습 이 그것이다.
인공적으로 지능을 만들기 위해서 컴퓨터에게 지능을 만들어 주어야 하는데 이 지능을 만드는 과정/방법을 학습이라고 한 것이다.
이처럼 학습하는 방법을 크게 3가지로 나눈다. 지도학습(Supervised Learning), 비지도학습(Unsupervised Learning), 강화학습(Reinforcement Learning).

 

지도학습(Supervised Learning)

어린 아이에게 과일의 이름을 학습시키는 상황을 예로 들어보자. 사과를 알려주기 위해서 사과를 보여주고 "이게 사과야" 라고 알려주는 방법이 지도 학습이다. 말 그대로 대상에게 학습할 내용과 정답을 지도해 주는 방법이다. 세상 모든 일에는 장점과 단점이 있듯이 이것도 있다. 먼저 장점, 쉽다. 아이에게 사과를 학습시키고 나서 다시 사과를 물어보면 곧 잘 대답한다. 가르쳐 주기도 쉽다. 사과를 들고 "이게 사과야" 하면되고 바나나를 들고 "이게 바나나야" 라고 알려주면 된다. 그리고 사과가 많이 없어도 학습시킬 수 있다. 반면에 단점도 있다. 배울때 없었던 것을 물어보면 대답을 잘 못한다. 즉, 미니 사과나 반쯤 먹은 사과를 보여주면 엉뚱한(잘못된) 대답을 할 가능성이 높다.
https://ko.wikipedia.org/wiki/%EC%A7%80%EB%8F%84_%ED%95%99%EC%8A%B5

 

지도 학습 - 위키백과, 우리 모두의 백과사전

 

ko.wikipedia.org

 

비지도학습(Unsupervised Learning)

말그대로 지도하지 않는 학습 방법이다. 위에서 본 것처럼 지도라는 말은 정답을 가르쳐 준다는 의미로 이해할 수 있다. 비지도 학습은 정답을 알려주지 않고 지능을 갖게되는 방법이다. 앞선 어린 아이에게 과일의 이름을 학습시키는 동일한 상황에서 이번에는 여러 개의 사과와 여러 개의 바나나를 보여주는 것이다. 사과 바나나를 모아 놓고 알아서 구분해 보라고 하는 것이다. 구분해 놓은 것을 보고 "이런 것들은 사과라고하고 저런 것들은 바나나라고해"라고 알려주는 방법이다. 즉, 정답을 가르처주지 않고 학습하는 방법이다.  장점, 일일히 시간내서 하나씩 가르쳐줄 필요가 없다. 따라서 학습 자료 준비 시간이 빠르다. 그냥 많은 과일을 보여주면 된다. 그리고 또다른 장점으로는 안 배웠던 사과를 보여줘도 곧 잘 정확하게 대답한다. 사과 하나하나의 특징을 학습한 것이 아니라 사과들의 공통된 특징을 학습했기 때문이다. 단점, 사과와 바나나 등 데이터가 많이 있어야 한다. 안그러면 같은 것 끼리의 특성을 잘 못찾기 때문이다. 그리고 가르치기 어렵다. "여기 사과들을 보렴, 사과는 주로 동그란 모양이고 빨간색이야", 데이터를 통해 배우는 방법으로 정확한 정답이 있는 것은 아니다. (다만, 결과가 사람이 인지하는 정답과 매우 유사하게 나오게 할 수록 사람과 비슷한 인공지능이 되는 것이다.)
https://ko.wikipedia.org/wiki/%EB%B9%84%EC%A7%80%EB%8F%84_%ED%95%99%EC%8A%B5

 

비지도 학습 - 위키백과, 우리 모두의 백과사전

비지도 학습 위키백과, 우리 모두의 백과사전.

ko.wikipedia.org

 

강화학습(Reinforcement Learning)

당근과 채찍을 통해 학습하는 방법이다. 잘하면 당근을 못하면 채찍을 통해 알고리즘 프로그램을 보완하여 지능을 갖게하는 방법이다. 다른 학습 방법과의 다른 점은 데이터 한 경우에 따라서 당근/채찍을 주는 것이 아니라 전체를 최적화 할 수 있는 근사치를 찾는 다는 점에서 다르다. 그리고 가장큰 차이점은 주어진 데이터에서 아직 조사되지 않은 영역을 탐험하는 것과 알고있는 지식 사이의 균형을 고려하면서 최적의 행동계획을 수립한다는 것이다. 강화학습의 예로는 미로를 빠저나가는 로봇을 생각해볼 수 있다. 상/하/좌/우 로 움직일 수 있는 행동중에서 어떤 이동의 움직임을 연속해서 선택해야 미로라는 환경에서 가장 빨리 빠져나갈 수 있는지를 여러번의 학습을 통해 찾아내는 것이다.
https://ko.wikipedia.org/wiki/%EA%B0%95%ED%99%94_%ED%95%99%EC%8A%B5

 

강화 학습 - 위키백과, 우리 모두의 백과사전

강화 학습(Reinforcement learning)은 기계 학습의 한 영역이다. 행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화

ko.wikipedia.org

 

기타

다른 방법으로 인간의 여러가지 인지지능 중 시각과 언어 지능을 인공지능으로 구분할 수 있다. 시각인지 분야는 컴퓨터 비전(Computer Vision) 분야로 그리고 언어인지 분야는 자연어 처리(NLP: Natural Language Proecss)분야로 크게 구분한다. 추론과 기억분야가 추가되기도 한다.
https://ko.wikipedia.org/wiki/%EC%9E%90%EC%97%B0%EC%96%B4_%EC%B2%98%EB%A6%AC

 

자연어 처리 - 위키백과, 우리 모두의 백과사전

자연어 처리(自然語處理) 또는 자연 언어 처리(自然言語處理)는 인간의 언어 현상을 컴퓨터와 같은 기계를 이용해서 묘사할 수 있도록 연구하고 이를 구현하는 인공지능의 주요 분야 중 하나다.

ko.wikipedia.org


사람의 지능은 여러 상황에 따라서 다양한 방법으로 문제를 해결한다. 그러나 인공지능은 아직 인간 수준의 종합지능을 가지고 있지는 못하다. 물론 단일화되고 규격화된, 그리고 제한된 문제 분야에서는 인간을 뛰어넘는 지능을 보여주기도 한다. 알파고와 이세돌기사의 대결에서 알파고가 승리한 것이 좋은 예시가 되겠다.
이처럼 아직 인공지능은 여러 문제를 동시에 구분하고 처리하는데 낮은 성능(지능)이다. 그러나 학습 방법이나 문제 종류에 따라서 세분화된 분야에서는 딥러닝(Deep Neural Network)의 발달로 높은 지능이 개발/발전되고 있다. 이 때문에 실제로 인공지능이나 기계학습을 활용하는 현업에서는 문제 상황과 확보한 데이터 그리고 목적에 맞게 학습 방법을 선택하는 것이 매우 그리고 더 매우 중요하다. 재료인 데이터의 중요성은 더 말할나위 없이 중요하다.

반응형
반응형

시스템 시간을 한국시간으로 설정하는 방법이다.
아주 간단하다. Dockerfile에 아래의 명령어를 추가해주면 끝이다.

RUN apt-get install tzdata 


도커파일 수정 및 빌드 후 컨테이너에 접속해서 date 명령어를 통해 설정된 Time zone을 확인할 수 있다.
안되어있을 경우 아래처럼 timdatectl 명령어를 통해 설정 할 수 있다.

$ timedatectl set-timezone Asia/Seoul


다시 date 명령어로 설정된 time zone의 시간을 확인할 수 있다.

반응형

+ Recent posts